ELIZADE UNIVERSITY, ILARA-MOKIN FACULTY OF ENGINEERING

DEPARTMENT OF CIVIL AND ENVIRONMENTAL ENGINEERING

COURSE CODE: CVE 411 SESSION/SEMESTER: FIRST SEMESTER/ 2019/2020

COURSE TITLE: HIGHWAY ENGINEERING I LEVEL: 400L

TIME ALLOWED: 3 HOURS

INSTRUCTION: ANSWER QUESTION 1, AND ANY OTHER THREE QUESTIONS

Question 1 (15 marks)

The data in Table 1 is obtained from the mechanical analysis of a soil sample. Using the USCS method for classifying soils, determine the classification of the soil and state whether the soil is suitable in its natural state for use as a subbase material. Table 2 is the USCS classification of soil and aggregate materials. (6 marks)

Table 1: Data from mechanical analysis

Sieve Size (mm)	Plasticity Tests Results	Percent Fine
4.000	94.8	LL = 48%
3.350	94	PL = 42%
2.360	91.8	
1.000	78.4	
0.850	71.8	
0.710	71.6	
0.500	40.5	
0.425	40.3	
0.355	40	
0.212	19.4	
0.180	17.6	
0.150	13.2	
0.075	4.4	

- (1b) Using the information in Table 3, plot the Cumulative frequency curve and estimate:
 - (i) The 15th And 85th Percentile Speed

(3 marks)

(ii) Full Overtaking Sight Distance (FOSD)

(3 marks) (3 marks)

(iii) Stopping Sight Distance

Table 3: Spot speed studies

Speed Range (km/hr)	Frequency (f)
0-10	32
11-20	28
21-30	58
31-40	82
41-50	53
51-60	45
61-70	75
71-80	67
81-90	62
91-100	54

Question 2 (15 marks)

- (2a) Explain the engineering properties of SP-SM soil group (5 marks)
- (2b) With the aid of a diagram, explain the cross-sectional elements of a typical two lane highway with linear cross slopes. (10 marks)

Question 3 (15 marks)

- (3a) Define the term 'Soil Compaction' listing its benefits in highway engineering (3 marks)
- (3b) Explain the following types of soil stabilization: (i) Mechanical stabilization (ii) Cement stabilization, (iii) Lime stabilization, (iv) Bituminous stabilization (v) Electrical stabilization (vi) Thermal stabilization. (12 marks)

Question 4 (15 marks)

- (4a) Explain the process for the determination of California Bearing Ratio (CBR), its applications in soil tests. (7 marks)
- (4b) List and explain the various surveys needed to be carried out in determining the geometric features for a road design (4 marks)
- (4c) With the aid of a diagram, explain in details compaction specification of soils in the field. (4 marks)

Question 5 (15 marks)

- (5a) Explain the following factors affecting highway geometric design: (i) Design speed
 (ii) Topography (iii) Traffic factors (iv) Design hourly volume and capacity
 (v) Environmental factors (5 marks)
- Using the information below, classify the soil according to the USCS:
 % passing sieve No. 4 = 86%, D10 (mm) = 0.1, D60 (mm) = 0.9
 % passing sieve No. 200 = 12%, D30 (mm) = 0.32, PL = 26%, PI = 10% (5 marks)
- (5e) Define the term sleepers and itemize its main functions in rail technology. (5 marks)

Question 6 (15 marks)

- (6a) Write out the empirical formula to determine the group index (GI) of the soils and explain every term contained therein (3 marks)
- (6b) A gravel or sandy soil is described as well graded or poorly graded, depending on the values of two shape parameters. Define these parameters, giving their formulas.
- (6c) Define and with the aid of diagrams the following parameters in geometric design of a highway (i) Horizontal Alignment (ii) Vertical alignment (iii) Cross-sectional elements (9 marks)

Question 2 (15 marks)

- (2a) Explain the engineering properties of SP-SM soil group (5 marks)
- (2b) With the aid of a diagram, explain the cross-sectional elements of a typical two lane highway with linear cross slopes. (10 marks)

Question 3 (15 marks)

- (3a) Define the term 'Soil Compaction' listing its benefits in highway engineering (3 marks)
- (3b) Explain the following types of soil stabilization: (i) Mechanical stabilization (ii) Cement stabilization, (iii) Lime stabilization, (iv) Bituminous stabilization (v) Electrical stabilization (vi) Thermal stabilization. (12 marks)

Question 4 (15 marks)

- (4a) Explain the process for the determination of California Bearing Ratio (CBR), its applications in soil tests. (7 marks)
- (4b) List and explain the various surveys needed to be carried out in determining the geometric features for a road design (4 marks)
- (4c) With the aid of a diagram, explain in details compaction specification of soils in the field. (4 marks)

Question 5 (15 marks)

- (5a) Explain the following factors affecting highway geometric design: (i) Design speed
 (ii) Topography (iii) Traffic factors (iv) Design hourly volume and capacity
 (v) Environmental factors (5 marks)
- (5b) Using the information below, classify the soil according to the USCS:
 % passing sieve No. 4 = 86%, D10 (mm) = 0.1, D60 (mm) = 0.9
 % passing sieve No. 200 = 12%, D30 (mm) = 0.32, PL = 26%, PI = 10% (5 marks)
- (5c) Define the term sleepers and itemize its main functions in rail technology. (5 marks)

Question 6 (15 marks)

- (6a) Write out the empirical formula to determine the group index (GI) of the soils and explain every term contained therein (3 marks)
- (6b) A gravel or sandy soil is described as well graded or poorly graded, depending on the values of two shape parameters. Define these parameters, giving their formulas.

 (3 marks)
- (6c) Define and with the aid of diagrams the following parameters in geometric design of a highway (i) Horizontal Alignment (ii) Vertical alignment (iii) Cross-sectional elements (9 marks)